“May all be happy, may all be healed, may all be at peace and may no one ever suffer."
Miltefosine has demonstrated activity against Leishmania parasites and neoplastic cells primarily due to its effects on apoptosis and disturbance of lipid-dependent cell signalling pathways. Several potential antileishmanial mechanisms of action have been proposed, however no mechanism has been identified definitely. Within the mitochondria, miltefosine inhibits cytochrome-c oxidase leading to mitochondrial dysfunction and apoptosis-like cell death. Antineoplastic mechanisms of action are related to antileishmanial targets and include inhibition of phosphatidylcholine biosynthesis and inhibition of Akt (also known as protein kinase B), which is a crucial protein within the PI3K/Akt/mTOR intracellular signalling pathway involved in regulating the cell cycle. Animal studies also suggest it may be effective against Trypanosome cruzi (the organism responsible for Chagas' disease), metronidazole-resistant strains of Trichonomas vaginalis, and it may have broad-spectrum anti-fungal activity.