“May all be happy, may all be healed, may all be at peace and may no one ever suffer."
Diazoxide is a benzothiadiazine that is the S,S-dioxide of 2H-1,2,4-benzothiadiazine which is substituted at position 3 by a methyl group and at position 7 by chlorine. A peripheral vasodilator, it increases the concentration of glucose in the plasma and inhibits the secretion of insulin by the beta- cells of the pancreas. It is used orally in the management of intractable hypoglycaemia and intravenously in the management of hypertensive emergencies. It has a role as an antihypertensive agent, a sodium channel blocker, a vasodilator agent, a K-ATP channel agonist, a beta-adrenergic agonist, a cardiotonic drug, a bronchodilator agent, a sympathomimetic agent and a diuretic. It is a benzothiadiazine, a sulfone and an organochlorine compound.
Pharmacology
As a diuretic, Diazoxide inhibits active chloride reabsorption at the early distal tubule via the Na-CI cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like Diazoxide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of Diazoxide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. As a antihypoglycemic, Diazoxide inhibits insulin release from the pancreas, probably by opening potassium channels in the beta cell membrane.
Pharmacodynamics: Diazoxide is a potassium channel activator. Its mechanism of action revolves around enhancing cell membrane permeability to potassium ions. This action consequently elicits the relaxation of local smooth muscles. This switches off voltage-gated calcium ion channels which inhibits the generation of an action potential.